Enrollment No: ____

Exam Seat No:

C.U.SHAH UNIVERSITY Summer Examination-2019

Subject Name : Physics I Subject Code : 4SC01PHY1 Semester : 1 Date : 19/03/2019

Branch: B.Sc. (All) Time : 02:30 To 05:30

Marks: 70

(14)

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

Define scalars. a)

- What is a frame of reference? **b**)
- Mention any two uses of a multimeter. c)
- Give the statement of Newton's third law of motion. **d**)
- Express the formula for moment of inertia. **e**)
- Define escape velocity. f)
- State Thevenin's theorem. **g**)
- What is elasticity? **h**)
- What is Newton's law of gravitation? **i**)
- Does energy remain conserved in an elastic collision? **j**)
- State Hooke's law. **k**)
- Give the full form of GPS. D
- m) Mention the value of acceleration due to gravity (g) along with its unit.
- **n**) Define amplitude of a wave.

Attempt any four questions from Q-2 to Q-8

Q-2		Attempt all questions	(14)
	a)	Define conservative force. Prove that the work done by the conservative force along a closed path is always zero.	e (05)
	b)	Find the angle between two vectors A and B; where $\vec{A} = 2\hat{\iota} - \hat{j} + \hat{k}$ and $\vec{B} = 3\hat{\iota} + 4\hat{j} - \hat{k}$.	(03)
	c)	Name and differentiate between the two types of vector products.	(06)
Q-3	,	Attempt all questions	(14)
	a)	Define: Centre of mass. Derive an expression for the centre of mass of the system of large number of particles.	n (05)
	b)	State and derive the work energy theorem.	(05)
	c)	Briefly explain the physics behind GPS.	(04)
Q-4		Attempt all questions	(14)
	a)	Explain briefly the various modulus of rigidity.	(07)
	b)	Derive the relation between angular momentum (L) and moment of inertia (I).	(05)
			1 of 2

	c)	Give example each of conservative and non-conservative forces.	(02)
Q-5		Attempt all questions	(14)
-	a)	Derive an expression for the gravitational potential energy for a point outside the sphere with proper diagram	(09)
	b)	Derive an expression for rotational kinetic energy of a rigid body.	(05)
Q-6		Attempt all questions	(14)
	a)	State and prove Norton's theorem.	(09)
	b)	State Kepler's laws of motion. How can one understand planetary motion based	(05)
		on Kepler's laws.	
Q-7		Attempt all questions	(14)
	a)	Explain the concept of time dilation using suitable example.	(08)
	b)	Differentiate between musical sound and noise.	(04)
	c)	State Newton's law of cooling.	(02)
Q-8		Attempt all questions	(14)
-	a)	Define self-induction. Derive the formula for self-inductance	(08)
		$L = -\varepsilon/(\partial I/\partial t)$. Also, prove that in the presence of magnetic field the energy stored in an inductor is $W = (1/2)LI^2$.	
	b)	Derive the expression for total energy of a simple harmonic motion.	(06)

